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ABSTRACT

Static analysis is known to yield numerous false alarms when used

in bug finding, especially for complex vulnerabilities in large code

bases like the Linux kernel. One important class of such complex

vulnerabilities is what we call “high-order taint style vulnerability”,

where the taint flow from the user input to the vulnerable site

crosses the boundary of a single entry function invocation (i.e.,

syscall). Due to the large scope and high precision requirement,

few have attempted to solve the problem.

In this paper, we present SUTURE, a highly precise and scalable

static analysis tool capable of discovering high-order vulnerabili-

ties in OS kernels. SUTURE employs a novel summary-based high-

order taint flow construction approach to efficiently enumerate the

cross-entry taint flows, while incorporating multiple innovative en-

hancements on analysis precision that are unseen in existing tools,

resulting in a highly precise inter-procedural flow-, context-, field-,

index-, and opportunistically path-sensitive static taint analysis.

We apply SUTURE to discover high-order taint vulnerabilities

in multiple Android kernels from mainstream vendors (e.g., Google,

Samsung, Huawei), the results show that SUTURE can both confirm

known high-order vulnerabilities and uncover new ones. So far,

SUTURE generates 79 true positive warning groups, of which 19

have been confirmed by the vendors, including a high severity

vulnerability rated by Google. SUTURE also achieves a reasonable

false positive rate (51.23%) perceived by users of our tool.

CCS CONCEPTS

• Security and privacy→ Systems security; • Theory of com-

putation → Program reasoning.
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1 INTRODUCTION

A major weakness of static analysis for bug finding is the high false

positive rate, which is one reason why dynamic approaches such as

fuzzing is gaining much more popularity where any bugs found are

technically true positives. This weakness is especially significant

with large and complex software such as the Linux kernel, where

many bugs are triggered after a sequence of syscall invocations.

Specifically, the large state space created by multiple program entry

points (permutation of syscalls) makes it extremely challenging for

static analysis to be both precise and scalable. On the other hand, a

fuzzer like Syzkaller [3] can generate random but meaningful test

cases involving different sequences of syscalls guided by coverage,

and proves to be effective at finding such bugs. However, there is no

guarantee that it will be able to uncover all bugs due to its nature

of random exploration.

One important class of the aforementioned complex bugs is the

high-order taint style vulnerabilities, where an attacker-controlled

input (i.e., taint source) is propagated to sensitive operations (i.e.,

taint sink) without proper sanitization, following a complex

control/data flow involving multiple entry function invocations.

For example, an entry function A() copies its user-provided

argument to a global variable G, which is later used as an array

index unchecked in another entry function B(), causing an

out-of-bound access. The order here refers to the number of entry

function invocations that are needed to trigger the vulnerability.

Compared to the simple “one-shot” taint vulnerabilities where the

taint propagation is confined within a single entry function

invocation (i.e., first-order), high-order bugs frequently seen in the

stateful software (e.g., Linux kernel) are much more difficult to

uncover, due to the need to reason about the complicated

cross-entry taint propagation.

Ideally, we want a static analysis tool that can systematically

analyze the program to identify the high-order vulnerabilities with

a good coverage, while minimizing false alarms. However, this is a

difficult task because of the following specific challenges:

Challenge 1. The tool needs to efficiently enumerate cross-entry

taint flows. Intuitively, since multiple entry functions can be

invoked in any order, an analysis needs to walk through many

possible permutations and repeatedly analyze a same entry in

different permutations, which is a significant scalability challenge.
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Challenge 2. The analysis needs to be accurate and precise enough

to handle the cross-entry taint flows which can be lengthy. Since

these flows are usually “concatenated” from multiple local flows

within individual entry functions, any inaccuracy will accumulate

and eventually cause an unacceptable number of false alarms.

Given these challenges, although there are many existing works

on statically discovering taint style vulnerabilities [8, 10, 26, 40],

few can discover high-order ones. The closest work is by Dahse et

al. [14], focusing on only the second-order vulnerability in web

applications, which are very different and relatively simple

compared to Linux kernel (e.g., higher-level programming

languages compared to C, fewer entry points and fixed taint

propagation paths around the limited central data storage).

In this paper, we develop a novel static analysis tool that can

address the above challenges and discover high-order (arbitrary

orders) taint vulnerabilities in the Linux kernel (and potentially

any other stateful C programs) effectively and efficiently. To

overcome the first challenge (i.e., scalability), our core idea is to

first analyze each entry function independently (only for once) and

create an abstract summary regarding its taint behaviors for both

local and global variables, then in the vulnerability discovery

phase, we construct high-order taint flows on demand by querying

the individual summaries. This enables an efficient high-order

taint flow enumeration. As for the second challenge (i.e., accuracy

and precision), we integrate many innovative and/or practical

features into the static analysis to boost its precision. They include

an opportunistic path-sensitive analysis piggybacked through a

flow-sensitive one, handling ambiguous all-to-all memory updates,

and many others that result in a highly precise inter-procedure

flow-, context-, field-, index-, and opportunistic path-sensitive

static taint analysis. Besides, we also make considerable efforts

handling kernel code patterns (e.g., indirect calls).

We evaluate our tool on driver modules of different Android

kernels used in various mobile devices (e.g., Google, Samsung,

Huawei). The results show that our tool can discover previously

unknown high-order taint vulnerabilities. So far, our tool has

reported 79 true positive warning groups, of which 19 have been

confirmed by developers, including one high severity vulnerability

as rated by Google. Our tool also achieves a reasonable false

positive rate as perceived by the warning reviewers (51.23%) and

an acceptable performance (e.g., concurrently analyze all 37

modules of a target kernel within 30 hrs).

We summarize our major contributions as below:

(1) To our best knowledge, we are the first to attempt to system-

atically and statically discover high-order taint style vulnerabilities

in the Linux kernel. Our method can also be easily generalized to

other stateful software.

(2) We implement a prototype tool SUTURE, which is able to

construct high-order taint flows with high-precision points-to and

taint analyses, making it general enough for our problem as well as

others requiring static taint analysis. We will open source SUTURE1

to facilitate the reproduction of results and future research.

(3) We successfully discover previously unknown high-order

taint vulnerabilities in the kernel and report them to the developers,

including high-severity ones.

1https://github.com/seclab-ucr/SUTURE

00 struct data { int32_t a; char b[4]; } d;
01
02 entry0(int cmd, char user_input) {
03 switch(cmd) {
04 case 0:
05 d.b[0] = user_input; break;
06 default:
07 foo(cmd,user_input);
08 }
09 }
10
11 foo(int n, char c) {
12 if (n == 0)
13 d.b[1] = c;
14 }

15 entry1() {
16 bar((char*)&d);
17 ...
18 d.b[0] = 0;
19 }
20
21 bar(char *p) {
22 *(p+4) += 0xf0; // (1)
23 }
24
25 entry2() {
26 char a[8];
27 a[0] = d.b[1] + 0xf0; // (2)
28 ...
29 }

Local Taint Flows:
entry0: entry2:
user_input d.b[0] d.b[1] (2)
entry1: d.b[1] a[0]
d.b[0] (1)

Calling Sequences:
entry0 entry1 : Overflow
entry0 entry2 :
entry1 entry1 :
…...

* Red: Input directly provided by the user, Blue: Global variables.

Figure 1: An Example of High-Order Bug Discovery

2 OVERVIEW

In this section we describe the architecture and overall workflow

of SUTURE, with a motivating example.

2.1 The Motivating Example

Fig. 1 shows an abstracted example of high-order vulnerabilities.

There are three entry functions, i.e., entry0(), entry1() and

entry2(), that can be invoked in any order. First, we note a byte

overflow at line 22 (site (1)). To trigger it, however, one needs to

first invoke entry0() with cmd=0, so that the user provided

user_input flows to the global variable d.b[0] (line 5). Then, a

different entry function entry1() needs to be invoked, which

subsequently invokes bar(). At that point, the value of d.b[0]
(previously set by the user input in entry0() whose address is

aliased with p+4) is retrieved and involved in an overflow-inducing

addition operation (line 22).

The most important characteristic of this vulnerability is that

the taint flow from the original user input to the final overflow

site is relayed via a global variable, making it a high-order (more

specifically, second-order) taint style vulnerability. As mentioned

in §1, it is difficult for existing tools to statically discover such

vulnerabilities since they usually only reason about the local taint

flows within a single entry function. For example, from the scope

of only entry1(), we do not know d.b[0] is actually controlled by
the user, while blindly assuming it can cause excessive false alarms.

Constructing high-order taint flows can be challenging, because

analyzing all possible permutations of entry invocations is not

scalable. Moreover, any analysis imprecision can be amplified when

stitching results from individual entry functions. We illustrate a

few potential sources of imprecision below.

(1) A path-insensitive analysis will wrongly conclude that

entry0(), with a non-zero cmd, can propagate user_input to

d.b[1] in its callee foo() (line 13), which is impossible since the

conflicting path conditions at line 6 and line 12. Such

path-insensitivity can eventually create a false alarm that line 27 in

entry2() (when invoked after entry0()) can cause an overflow.
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(2) To discover the potential overflow at line 22, the static analysis

must be able to accurately resolve the pointer arithmetic and figure

out that *(p+4) is an alias to d.b[0], otherwise a false negative will
occur. Additionally, the analysis also needs to be inter-procedural

in order to figure out that argument p of bar aliases to d;
(3) An index-insensitive analysis may issue a false alarm at line 27,

following the calling sequence entry0(cmd=0,...) -> entry2(),
because d.b[0] and d.b[1] are not differentiated. If combined with

path-insensitivity in (2), there will likely be many more false alarms

after line 27 under the calling sequence entry0(cmd=1,...) ->
entry2, since the whole array a can be over-tainted instead of only

a[0]. Moreover, since d contains d.b as an embedded array, the

analysis also needs to handle such nested structures;

(4) The analysis must also correctly recognize that line 18 in

entry1() kills the existing taint of d.b[0], so that additional

entry1() invocations after the first one will no longer trigger the

overflow at line 22. This requires a cross-entry flow-sensitivity.

Unfortunately, to our best knowledge, no existing static analysis

tools possess all these precision we desire (with more manifested

later in §3). This motivates SUTURE, a highly precise static analysis

tool capable of discovering high-order taint vulnerabilities.

2.2 Workflow

Weprovide an overview of SUTURE in this section. The architecture

of SUTURE is shown in Fig. 2. We briefly describe its workflow in

four stages:

1. Input. SUTURE requires as input the LLVM bitcode file

compiled from the target program, along with a config file which

specifies the entry function information (e.g., function names,

user-controlled arguments). For the motivating example in Fig. 1,

entry0(), entry1(), and entry2() will be listed as three entry

functions in the config file, where the user_input argument of

entry0() is specified as the user controllable input.

2. Static Taint Analysis. SUTURE will then perform a precise

static taint analysis and generate an independent summary for

each entry function, which includes all the local taint flows within

it. In this phase both user input and global variables are treated as

taint source, while the local taint flow to every variable used in the

entry function is recorded. In Fig. 1 we show the local taint flows

of the three entry functions in the bottom left box (we omit the

intermediate variables visible only at the bitcode level for site (1)
and (2).). It is worth noting that SUTURE analyzes each entry

function only once in an order-insensitive way, e.g., entry0() can

be analyzed either before or after entry1()), avoiding the

expensive cost of repeatedly analyzing a same entry in different

calling sequences, however, SUTURE can still discover high-order

vulnerabilities as detailed later.

3. Vulnerability Discovery. In this stage, SUTURE tries to stitch

together various entry functions with various vulnerability

detectors to pinpoint different types of bug-inducing program

statements (e.g., an arithmetic operation may cause integer

overflow). For each such statement, SUTURE decides whether any

cross-entry taint flows exist from user input to the problematic

statement. In the motivating example, the local taint flows of

entry0() and entry1() are stitched to form the high-order taint

flow of the vulnerability.

Output

Input Static Taint Analysis

Vulnerability Detection

Program LLVM 
Bitcode

Entry Function 
Specification

F i Taint Summary

Flow Constructor

Detector 0
Detector 1

Detector n

…...
Warning Reports

Figure 2: System Architecture of SUTURE

4. Output. For each issued warning, SUTURE outputs any relevant

information such as the warning type and full cross-entry taint

flow, SUTURE also calculates the order for each warning. For the

motivating example, SUTURE eventually fires one valid warning

whose calling sequence is shown in the right bottom (a second-order

vulnerability), while avoiding all the false alarms as mentioned in

§2.1.

3 STATIC ANALYSIS DESIGN

In this section we describe the design of SUTURE, including the

various enhancements made to make the precise and efficient high-

order taint analysis possible.

3.1 Positioning

Given the LLVM bitcode files and the entry function specification,

the goal of static taint analysis is to construct a taint summary

(detailed in §3.3) for each entry function, to achieve this goal, we

independently analyze each entry function and record its taint facts.

Our static taint analysis follows the basic design and reuses themain

data structures of Dr. Checker [26], which makes a soundy inter-

procedure traversal of each entry function in the top-down style and

for each visited LLVM IR, performing the alias and taint analysis,

which updates the points-to and taint information associated with

variables involved in the IR. The rules for points-to record update

and taint propagation are quite standard as manifested in [26], so

we will not elaborate on them again. Basically, Dr. Checker’s static

analysis is context-, flow-, and field- sensitive. However, as detailed

later, all these sensitivity are partial or limited (see §3.6.1 and §3.6.3)

which needs to be addressed in SUTURE. Moreover, SUTURE also

has many additional requirements for the static analysis compared

to Dr. Checker. Throughout the section, we primarily focus on

describing our enhancements over it.

In this section, we will first describe three novel features of

SUTURE that are not found in other static analysis tools, including

the essential techniques to support scalable high-order taint flow

construction (§3.3) and several innovative techniques to improve

analysis precision and efficiency (§3.4 and §3.5). Then we describe

various other improvements in SUTURE (§3.6) that are although

mostly well-known, but rarely packed together to achieve a highly

precise static analysis, which is critical for high-order bug discovery

since mistakes can be amplified when multiple local taint flows

connect (§2.1).
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3.2 Definitions

Before we delve into the details, we start with a set of definitions

to simplify the later description of the design.

Def 0 An entry function 𝜀 of a program module (e.g., a kernel mod-

ule) serves as a part of the module interface, thus it does not have

any callers within the same module and intends to be invoked di-

rectly by the user or other modules (e.g., top-level ioctl() func-
tions of a driver).

Def 1 The taint source S includes both user-provided arguments of

entry functions (U) and all globally accessible variables or memory

regions (G which we refer to as global memory). Note that G con-

tains both explicitly defined global variables (e.g., a global integer)

and the ones reachable from them, e.g., a global object containing a

pointer field pointing to heap memory. This can go across arbitrary

layers of pointer indirection. Formally:

S = U ∪ G

U = {𝑣 |∃𝜀, 𝑣 is a user argument of 𝜀}

G = {𝑣 |𝑣 is globally accessible}

Def 2 A calling context � is defined as a sequence of instructions:

� = [𝑖0, 𝑖1, ..., 𝑖2𝑛]

An instruction with an even subscript denotes the entry instruction

of a caller function, while the odd denotes a call site instruction

within the caller (e.g., 𝑖2 is the entry of the function that is called at

𝑖1), the sequence always ends with the entry instruction of current

executing function, so its length is always odd. This definition

enables us to differentiate multiple callees at a same call site (e.g.,

an indirect call with multiple potential targets).

Def 3 We define an “instruction location” (𝐼𝑛𝑠𝑡𝐿𝑜𝑐 for short in the

remaining paper) as an instruction 𝑖 plus the calling context � (Def

2) it is executed in, we use 𝐼 to denote an 𝐼𝑛𝑠𝑡𝐿𝑜𝑐 to differentiate it

with a static instruction 𝑖:

𝐼 = (𝑖, �)

Def 4 A taint flow 𝜏 is basically an 𝐼𝑛𝑠𝑡𝐿𝑜𝑐 sequence:

𝜏 = [𝐼0, 𝐼1, ..., 𝐼𝑛]

The first 𝐼𝑛𝑠𝑡𝐿𝑜𝑐 𝐼0 initiates the taint propagation from one taint

source variable 𝑣 ∈ S, while the remaining 𝐼𝑛𝑠𝑡𝐿𝑜𝑐s pass the taint
on.

Def 5We define the connect operator ◦ for taint flows as following:

𝜏0 = [𝐼00, 𝐼01, ..., 𝐼0𝑛], 𝜏1 = [𝐼10, 𝐼11, ..., 𝐼1𝑛]

𝜏0 ◦ 𝜏1 =

{
[𝐼00, ..., 𝐼0𝑛, 𝐼10, ..., 𝐼1𝑛], if sink(𝐼0𝑛)==src(𝐼10)

∅, else

This basically says that two taint flows can be sequentially

connected iff the last 𝐼𝑛𝑠𝑡𝐿𝑜𝑐 of one taint flow propagates the

taint to a variable that is used as the taint initiator at the beginning

of the other taint flow.

Def 6We now define the “order” of a taint flow with the 𝑜𝑟𝑑𝑒𝑟 ()
function, before that, we need to first define the 𝑟𝑒𝑎𝑐ℎ() function
to test the reachability between two 𝐼𝑛𝑠𝑡𝐿𝑜𝑐s:

𝑟𝑒𝑎𝑐ℎ(𝐼0, 𝐼1) =

{
𝑇𝑟𝑢𝑒, if ∃𝜀, 𝐼0 can reach 𝐼1 on 𝐼𝐶𝐹𝐺 (𝜀)

𝐹𝑎𝑙𝑠𝑒, else

𝐼𝐶𝐹𝐺 (𝜀) means the inter-procedure control flow graph of the entry

function 𝜀, 𝐼0 can reach 𝐼1 on 𝐼𝐶𝐹𝐺 (𝜀) implies that there is at least

one execution of 𝜀 that can reach the 𝐼𝑛𝑠𝑡𝐿𝑜𝑐 𝐼0 and after that, 𝐼1.
With the 𝑟𝑒𝑎𝑐ℎ() definition:

𝑜𝑟𝑑𝑒𝑟 (𝜏) = |{𝑘 |𝐼𝑘 ∈ 𝜏, 𝐼𝑘+1 ∈ 𝜏,¬𝑟𝑒𝑎𝑐ℎ(𝐼𝑘 , 𝐼𝑘+1)}|

Intuitively, 𝑜𝑟𝑑𝑒𝑟 (𝜏) is the number of “break points” in 𝜏 , where to
continue following the taint flow we have to make another entry

function invocation. We hereby call a taint flow 𝜏 high-order taint
flow if 𝑜𝑟𝑑𝑒𝑟 (𝜏) > 1.

It is worth noting that since 𝑟𝑒𝑎𝑐ℎ() is not transitive (e.g.,

𝑟𝑒𝑎𝑐ℎ(𝐼0, 𝐼1) ∧ 𝑟𝑒𝑎𝑐ℎ(𝐼1, 𝐼2) � 𝑟𝑒𝑎𝑐ℎ(𝐼0, 𝐼2), because the path

between 𝐼0 and 𝐼1 may pose conflicting constraints to that between

𝐼1 and 𝐼2), our definition of 𝑜𝑟𝑑𝑒𝑟 () can underestimate the real

taint flow order. In other words, there can be more “break points”

in a taint flow than counted by 𝑜𝑟𝑑𝑒𝑟 () (e.g., 𝑟𝑒𝑎𝑐ℎ(𝐼0, 𝐼1) ∧

𝑟𝑒𝑎𝑐ℎ(𝐼1, 𝐼2) results in no “break points” between 𝐼0 and 𝐼2 by

𝑜𝑟𝑑𝑒𝑟 (), but there could be one.). However, it may be expensive to

calculate the real order due to the need of constraint solving.

Besides, we find that the underestimation rarely happens in

practice.

Def 7 We define the local taint flow set of an entry function 𝜀 as
𝐿𝑇𝜀 . It is the set of all taint flows that can be produced within one

invocation of 𝜀, naturally, we have ∀𝜏 ∈ 𝐿𝑇𝜀 , 𝑜𝑟𝑑𝑒𝑟 (𝜏) == 1.

3.3 Summary-Based High-Order Taint Flow
Construction

The foremost challenge SUTURE needs to address is to efficiently

construct high-order taint flows in the face of the enormous space

of the possible calling sequences of entry functions. To avoid

repeatedly analyzing a 𝜀 in different sequences as a naive solution

might do, SUTURE employs a summary based method, where each

𝜀 only needs to be analyzed once for summary generation, then

SUTURE can efficiently construct high-order taint flows, by

connecting the local taint flows as mentioned in Def 5. Note that

the global variable acts as waypoints in connecting the local taint

flows, e.g., one local flow may propagate user input taint source to

a global variable and then another local flow may propagate the

same global variable (as source) to a critical sink. We detail the two

main steps of this process below.

3.3.1 Taint Summary Generation. The taint summary of an entry

function 𝜀 is basically its local taint flow set 𝐿𝑇𝜀 (Def 7 in §3.2), in

other words, the summary records all local taint flows originating

from S (Def 1 in §3.2) and sinking to every accessed variable (local

or global) within 𝐼𝐶𝐹𝐺 (𝜀). SUTURE organizes the local taint flows

in 𝐿𝑇𝜀 by the sink variables - each sink variable is associated with a

set of local taint flows (𝜏 ) reaching it, while the source variable can

be obtained from the taint tag (§3.6.5) associated with each 𝜏 . This
enables a quick query of 𝜏 by sink, as well as the connect operation

(Def 5 in §3.2) for constructing high-order taint flows.

Conceptually, SUTURE’s taint summary is similar to those used

in prior bottom-up static analysis work [9, 10, 40]. However, one

important difference is that SUTURE relies on the summaries to

connect multiple top-level entry function invocations, instead of

connecting a caller to a callee (e.g., by applying the callee’s summary

at the call site). As such, SUTURE has a special focus on the shared
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typedef struct {int X;} foo; struct {foo *p;} G; foo F;
e0(u0) {

G.p = malloc(...);
G.p->X = u0;

}
In Summary: G.p -> obj0 (solid)

0 : u0 0.X
e2(u2) {
  int a = G.p->X + 1;
G.p->X = u2;

}
In Summary: G.p -> obj2 (dummy)

2 : obj2. ; 3 : u2 2.X

e1() {
G.p = &F;

  int a = G.p->X + 1;
}
In Summary: G.p -> F (solid)

1 : F.
e3(u3) {
  int a = G.p->X + 1;
G.p->X = u3;

}
In Summary: G.p -> obj3 (dummy)

4 : obj3. ; 5 : u3 3.X

Figure 3: Examples of Implicit Global Memory Matching

states in the taint summary, it comprehensively models the global

memory (seeDef 1 in §3.2) of arbitrary layers of pointer indirection.

Specifically, whenever pointers are involved in global variables, it

can be challenging to resolve them because the memory they point

to can in theory be changed in any 𝜀. It is therefore tricky to reason
about such global pointers, which represents a unique challenge

for connecting local taint flows of top-level entry functions.

3.3.2 High-Order Taint Flow Construction. Connecting two local

taint flows is relatively straightforward. However, to do so correctly,

we discuss two important considerations below.

Global Memory Matching. As mentioned earlier, two local taint

flows can be connected only when one’s sink matches the other’s

source (Def 5 in §3.2). Since high-order taint flows are relayed via

global memory, the question becomes how to match the global

memory tainted in one flow with the one used in another flow. As

mentioned in Def 1, SUTURE handles two types of global memory:

explicitly defined and those reachable by global pointers. For the

former, we can simply match them by their identifiers. However,

things get more complicated for the pointer case.

Consider the example in Fig. 3, e0() and e1() each assigns G.p
(a pointer field in a global object) to either a dynamically allocated

heap object or statically defined one, while both e2() and e3()
directly access whatever object pointed to by G.p. In this situation

SUTURE must correctly “guess” the relationship between the

objects visited in the four entry functions in order to connect the

local taint flows. For example, e0() and e1() obviously visit the

different object instances, so although u0 flows to G.p->X in e0(),
and the seemingly same G.p->X flows to a in e1(), there is no way
for u0 to flow into a, because obj0 in 𝜏0 (the heap object) cannot

match F in 𝜏1 (statically defined). However, since e2() and e3()
can access either obj0 or F (depends on whether e0() or e1() is

called earlier), we should allow their local 𝜏 to be connected to

each other, or to those in e0() and e1(). For example, 𝜏3 can

connect 𝜏1 because obj2 can potentially be F. Similarly, 𝜏3 can also

connect 𝜏4 because obj2 and obj3 can be identical).

To summarize, when objects are accessed but not defined in a

𝜀 (e.g., obj2 and obj3), we do not necessarily know which objects

are used (e.g., can be either obj0 or F ), so we create a placeholder

dummy object. Instead, such bindings are instantiated by access-

path matching (e.g., both obj2 and F can be accessed via G.p) when
connecting local taint flows.

Taint Overwrite. Another point worth discussing is that not all

𝜏 should be preserved for flow connection. For example, a global

memory may be tainted during the middle of a 𝜀 invocation but

later untainted. Similarly, it may be tainted by different sources

at different points in the function. Therefore, SUTURE filters out

those 𝜏 whose taint will be overwritten later. Note that this may

prevent SUTURE from discovering some taint-style concurrency

bugs, where an intermediate taint of a global memory in one 𝜀 can
be visible to another. In favor of limiting the false taint flows, we

leave a better treatment of concurrency situations as future work.

3.4 Opportunistic Path Sensitivity

It is well known that static analysis can follow infeasible paths

due to unawareness of conflicting path constraints, causing both

inaccuracy (e.g., impossible taint propagation) and inefficiency (e.g.,

analyzing unnecessary branches). The straightforward solution is

to adopt path-sensitivity, however, a fully path-sensitive analysis

can be overly expensive, due to complex constraint solving and

path explosion. We thus aim to utilize path-sensitivity whenever

possible, while avoiding having to pay the high cost. To this end,

we propose what we call opportunistic path-sensitive analysis. We

make the design based on two important observations:

(1) A good fraction of the path constraints in the kernel are

simple, and yet collecting and solving them would allow us to

prune a large number of infeasible paths.

(2) It is possible to piggyback some form of path-sensitive analy-

sis into the workflow of a flow-sensitive analysis.

Based on the above, our idea is to opportunistically collect path

constraints during the flow-sensitive analysis and only in the

following simple forms: 𝑣 𝑜𝑝 𝐶 , where 𝑣 is a variable, 𝐶 is a

constant (e.g., a literal number), and 𝑜𝑝 ∈ {==, >, <, ≥, ≤}.
Specifically, whenever our flow-sensitive analysis enters a

conditional branch, we collect the corresponding constraint if it is

in such a simple form. Whenever branches merge, we remove the

constraints. At a first glance, no path-sensitive analysis is allowed

if we piggyback the flow-sensitive analysis in this way, since at the

merge point we lost the constraints for individual branches.

However, we note that within one branch, it is possible that

additional conditional statements can occur (intra- or inter-

procedure), making it possible for us to trim infeasible paths with

the opportunistic path-sensitivity. We show a real world example

in Fig. 4. As we can see, msm_lsm_ioctl() calls msm_lsm_ioctl_
shared() at line 3, under one specific switch case with the cmd
restricted to SNDRV_LSM_REG_SND_MODEL_V2, the same cmd is

passed to the callee and used again as the switch conditional at

line 8, since its value has already been restricted at the call site

(line 3), there is actually only one valid switch case in the callee

(line 9) under this calling context. Our opportunistic path-sensitive

analysis can collect the equality constraint on cmd at line 3 and

propagate it to the callee. This allows us to filter out 16 out of 17

infeasible switch cases due to the conflicting constraints,

simultaneously improving accuracy and efficiency.

3.5 Multi-Source Multi-Sink Pairing

One unique challenge for static analysis we identified during our

study is the multi-source multi-sink pairing problem. If not
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00 static int msm_lsm_ioctl(..., unsigned int cmd, ...) {
01 switch (cmd) {
02 case SNDRV_LSM_REG_SND_MODEL_V2:
03 msm_lsm_ioctl_shared(..., cmd, ...); break;
04 case …
05 }
06 }
07 static int msm_lsm_ioctl_shared(..., unsigned int cmd, ...) {
08 switch (cmd) {
09 case SNDRV_LSM_REG_SND_MODEL_V2: ……; break;
10 case … //17 cases in total
11 }
12 }

Figure 4: An Example of Opportunistic Path-Sensitivity

properly handled, explosion of points-to records and taints can

happen, leading to a massive number of false positives. Fig. 5

illustrates the problem with a concrete example. When starting to

analyze the function start_endpoints(), the argument subs is a

pointer that points to two instances of snd_usb_substream
according to the previous static analysis results. Consequently, the

left side of the assignment at line 2 can be one of two memory

locations (i.e., data_subs field of snd_usb_endpoint, either

instance 0 or 1), while the right side subs points to either instance

0 or 1 of snd_usb_substream. In this situation, the common way

to perform the assignment (as used in many popular static analysis

tools like Dr. Checker [26] and SVF [34]) is all to all (e.g.,

data_subs field of snd_usb_endpoint 0 will point to both

snd_usb_substream 0 and 1). However, it is obvious that in the

real program execution, data_subs can only point back to its own

parent snd_usb_substream instance (e.g., 0 to 0 and 1 to 1). We

call this multi-source multi-sink pairing problem, failure to pair

the two sides (e.g., all-to-all update) will create many superfluous

data flow facts.

To solve this problem, our key observation is that in the

aforementioned scenario, two sides of the assignment actually

share the same source of multiplicity (e.g., the left side

ep0->data_subs at line 2 has two possible locations because ep0
can point to two structure instances, which is again because subs
is so at line 1, the same reason for the right side), thus, as long as

the unique source “collapses” to one of many possibilities in the

runtime, both sides of the assignment “collapse” as well. Following

this observation, for every LLVM IR that can serve as a “source of

multiplicity”, e.g., a phi instruction can aggregate multiple

points-to/taint records from different paths to its receiver variable,

SUTURE assigns each individual outcome record a unique label

< 𝐼𝑅, 𝑖 > (𝑖 is a numeric value to differentiate multiple outcome

records of the multiplicity 𝐼𝑅), which will also be propagated to all

derived records. For example, in Fig. 5 the pointer ep0 is derived
from subs, and the latter’s two points-to records for

snd_usb_substream 0 and 1 have their labels respectively

inherited by ep0’s two records for snd_usb_endpoint 0 and 1. By

matching these labels, when the multi-to-multi assignment

happens (e.g., line 2) we can precisely pair the source and the sink

if they share the same source of multiplicity, bringing the 2 ∗ 2

update to two 1 ∗ 1 ones in Fig. 5.

00 static int start_endpoints(struct snd_usb_substream *subs) {
01 struct snd_usb_endpoint *ep0 = subs->data_endpoint;
02 ep0->data_subs = subs;
03 …...
04 }

data_endpoint

data_subs

snd_usb_substream 0 snd_usb_endpoint 0

data_endpoint

data_subs

snd_usb_substream 1 snd_usb_endpoint 1

Figure 5: An Example of Multi-Source Multi-Sink Pairing

00 struct data {
01 int a,b; } d;
02
03 foo(int c) {
04 int r = 1;
05 if (c>0) {
06 r += c;
07 d.a += r;
08 } else {
09 r -= c;
10 d.a -= r;
11 }
12 }

if.then:
%add = add 1, %c

  %0 = load i32* GEP (%struct.data* @d, 0, 0)
  %add1 = add %0, %add

store %add1, i32* GEP (%struct.data* @d, 0, 0)
  br label %if.end

if.else:
%sub = sub 1, %c

  %1 = load i32* GEP (%struct.data* @d, 0, 0)
  %sub2 = sub %1, %sub

store %sub2, i32* GEP (%struct.data* @d, 0, 0)
  br label %if.end

Figure 6: Necessity of Memory SSA based Analysis

3.6 Other Improvements in SUTURE

3.6.1 Memory SSA based Analysis. One major source of

inaccuracy of Dr. Checker (and many other LLVM based static

analysis) is the lack of memory SSA (Static Single Assignment)

form [11]. While the top-level variables in LLVM IR are inherently

put in the SSA form [28], the address-taken memory objects are

not, causing difficulties when implementing flow- and context-

sensitive analysis. For example, in Fig. 6, two redefinitions of the

same local variable r (line 6 and 9) results in two individual

top-level variables at the LLVM IR level (i.e., %add and %sub), so
the static analysis can easily associate the later usage with the

unique definition simply by the LLVM variable identifier (e.g.,

%add). Based on this built-in SSA form, Dr. Checker achieves the

flow- and context- sensitivity for the top-level LLVM variables.

However, multiple redefinitions of the address-taken memory

object field (e.g., d.a at line 7 and 10) do not result in different

memory cells, instead, they go to the same memory location (e.g.,

the two store in Fig. 6), in other words, the SSA form for memory

objects is not enforced in LLVM IR. In this situation, the static

analysis must be able to correctly correlate the load of a memory

cell to one of (potentially) many store, otherwise, it will lost the
flow- and context- sensitivity for the widespread address-taken

memory objects, causing both false positives and negatives (e.g.,

over- and under- taint), as happened in Dr. Checker.

To address this problem, SUTURE implements an on-the-fly

memory SSA analysis. Specifically, we append an 𝐼𝑛𝑠𝑡𝐿𝑜𝑐 to each

points-to/taint update of a memory cell to represent where the

update happens (e.g., one store instruction in Fig. 6, together with
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the calling context of foo()). Based on such information, SUTURE

can correctly figure out which points-to/taint records should be

propagated to a certain use site of the same memory cell, by

performing an inter-procedure reachability test between the

update site and the use site. The reachability test is implemented

based on the topology and the dominance relationship of the

control flow graph (e.g., if a strong points-to update site

post-dominates a previous one on a same memory cell, the old

points-to will be masked out from the new site), since the

algorithm is standard, we omit its details here.

3.6.2 Index Sensitivity. Besides being field-sensitive, SUTURE is

also index-sensitive (i.e., the ability to differentiate individual array

elements), whose importance has already been shown in the moti-

vating example in §2.1. In principle, our design of index-sensitivity

follows two rules for array read/write respectively:

(1) If an array element is read with a constant index (e.g., v =

a[2]), we return the points-to/taint records related to exactly that

index; If the index is a variable (e.g., v = a[i]), we conservatively

merge the records of all array elements and return them.

(2) If an array element is written with a constant index (e.g., a[2]

= v), we perform a strong update (i.e., the new records can overwrite

the old ones) for exactly that index; If the index is a variable (e.g.,

a[i] = v), we conservatively update every array element, and the

update is weak (i.e., new records co-exist with old ones).

3.6.3 General Language Feature Support. In this section we discuss

our enhancements in SUTURE for two C language features that are

critical for analysis accuracy.

Nested Structure. Nested structure (i.e., one structure is embedded

as a field in a parent structure) is a widely used language feature

and failure to correctly handle it can significantly impact the field-

sensitivity, for example, Dr. Checker only differentiates the top-

layer fields in the parent structure but not those in the embedded

ones, which can cause issues like over-tainting.

SUTURE addresses this problem by recursively creating a new

abstract memory object for each embedded field when it is accessed,

while maintaining the relationship between the new object and

the parent object, this way, SUTURE supports nested structure of

arbitrary layers. We also carefully design the LLVM IR processing

logics in the points-to and taint analysis to take nested structure

into account, for example, SUTURE processes all indices of the

GEP instruction instead of only the first 2 since it is required for

accessing the fields within the embedded structures.

Pointer Arithmetic. It is well known that pointer arithmetic in

the C language family can often cause inaccuracies in static analysis,

since it is difficult to keep track of the exact pointer location during

the arithmetic calculation, e.g., normally, LLVM IR accesses the

2nd field of a structure by simply specifying the field number 2 in

the GEP instruction with the structure base pointer, however, in

some cases (e.g., optimization) the field can be accessed by directly

subtracting an offset (between the 2nd and 5th fields) from the

pointer to the 5th field. To handle such cases, SUTURE records the

detailed layout (e.g., size and offset of each field in bytes) of each

structure and faithfully calculates the new target field after pointer

arithmetic according to the pointer type (e.g., pointer conversion

aware, like (char*)p-1 and (int32*)p-1 are different), offset to
add/sub, and the structure layout. It is worth noting that our pointer

Detector Description

ITDUD Tainted data usage in risky functions, e.g., strcpy()
TAD Tainted arithmetic operations, e.g., integer overflow

TLBD Tainted loop bound conditions, e.g., infinite loops

TPDD Tainted pointer dereference, e.g., arbitrary mem write

Table 1: Vulnerability Detectors used in SUTURE

arithmetic handling has a byte-level accuracy and we always try

to align to the field boundary, though rare, this may cause some

inaccuracies (e.g., a pointer to the middle of a field, or bit-level

pointer arithmetic), we leave the handling of these cases as the

future work.

3.6.4 Kernel Code Pattern Handling. To better support the

analysis of the kernel code, SUTURE also takes care of some

special kernel code patterns, of which the most important one is

the prevalent indirect calls. Dr. Checker uses the type-based

method to resolve indirect call targets, though being a common

and standard solution, it can cause many false positives in practice.

To further improve the accuracy, SUTURE employs a method

similar to PeX [42], which takes advantages of domain knowledge

on the kernel coding paradigm and resolves the indirect call

targets by matching the parent structure and field id of the

function pointer.

3.6.5 Multi-Tag Taint Analysis. To construct high-order taint flows

we must be able to differentiate multiple taint sources (see Def 1,5

in §3.2), e.g., in Fig. 1 we must know exactly that local taint flow

of entry1() originates from the specific global variable d.b[0]
to connect it to that of entry0(). So instead of only maintaining

the binary “tainted or not” state, SUTURE associates a unique taint

tag for ∀𝑣 ∈ S, the tag will also be propagated to all the tainted

variables by the related source, enabling us to easily query the taint

sources for each 𝜏 .

4 VULNERABILITY DISCOVERY AND
WARNING GROUPING

After generating the taint summary for each 𝜀, SUTURE can then

proceed to discover the high-order taint vulnerabilities and output

the warning report. This process includes two steps: (1) identify

the instructions that can potentially trigger vulnerabilities (e.g., an

arithmetic instruction may cause an integer overflow), this is done

by various vulnerability detectors. For each identified instruction,

SUTURE confirms the existence of the vulnerability by deciding

whether any involved variable is tainted (can be through a

high-order flow) by the user, and (2) fire and group warnings for

confirmed vulnerabilities. In this section, we detail the important

aspects of these two steps.

Vulnerability Detectors. Dr. Checker has a collection of simple

but well-defined vulnerability detectors, each targets instructions of

a certain pattern (e.g., conditional jump at the loop bound). Since our

goal is to discover taint style vulnerabilities, we reuse Dr. Checker’s

4 detectors aiming at them. We list our selected detectors and a

brief description of their purposes in Table 1, more details can be

found in the original paper [26]. We leave the development of more
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detectors as future work. As mentioned above, SUTURE’s novelty

mainly lies in its ability to construct high-order taint flows, which

is independent of the detectors.

On-Demand Query of Taint Summaries. One way to apply the

vulnerability detector is to first construct the high-order taint

summaries by considering all permutations of entry functions,

which can be overly expensive. Instead, we construct the

high-order taint flows on demand in a backward fashion. In other

words, SUTURE provides a query utility (“Flow Constructor” in

Fig. 2) which takes a sink variable as input and taint flows from U

to it (including high-order ones) as output. For instance, we first

apply the vulnerability detector on each individual entry function

by looking at its local taint flows. If a warning is generated (e.g., a

potential integer overflow happens due to an addition operation

taking a tainted operand), we check if the taint source is user input

or some global memory. If it is global memory, we need to query

the summaries of other entry functions with a matching sink

(same global memory being the sink). There, if the corresponding

source is an user input, we conclude that it is a second-order

warning. We make this design choice because it is more flexible

(e.g., enabling us to focus only on sink variables of interest) and fits

better into the workflows of many existing static bug finding

tools [8, 26], which first pinpoints potential vulnerable sites in the

program with various detectors, and then take a closer look at the

involved variables (e.g., decide whether it is tainted by user).

It is worth noting that although SUTURE is able to discover

vulnerabilities of arbitrary orders by recursively performing the

aforementioned backward query, we observe that in practice it is

highly unlikely to have true high-order vulnerabilities above the

order of 4 (most likely false positives if it is longer than that). In

fact, our evaluation shows most true positives are second-order.

Therefore, we will stop searching for higher-than-4 order taint

flows when the current query already takes too long a time.

Warning Grouping. If an user tainted variable is detected in a

sensitive instruction (defined by the vulnerability detector as

mentioned in §4), a warning will be fired for it. SUTURE assembles

all the warnings issued in the input program as its output. Each

warning specifies the warned instruction and its calling context,

the warning type (e.g., integer overflow), and the complete taint

flow(s) from the user input to the sink site. SUTURE also calculates

the 𝑜𝑟𝑑𝑒𝑟 of each taint flow and attaches it to each warning.

One important observation we have during the warning review

process is that many warnings often share a same “prefix” in the

initial taint propagation while are only slightly different in the final

warning sites or taint sinks. For example, 𝑎 is the tainted variable in

an overflow inducing instruction 𝑐 = 𝑎+𝑏, and 𝑐 , which is tainted by
𝑎, is then immediately used as a loop bound, in this situation, two

rawwarnings will be generated for the overflow and the loop bound

respectively, obviously, instead of reviewing the two warnings one

by one, a better way is to first inspect the common trace prefix from

the original user input to 𝑎, and if no problem, then the different

sinks (often close to each other).

Based on this observation, to help the reviewers screen the

warnings more efficiently, SUTURE groups the similar warnings

together from the data flow perspective, regardless of the warning

types as listed in Table 1 (i.e., warnings of different types can be

put in a same group.). More specifically, two warnings will be

grouped together if i) their warning sites (i.e., the warned

instruction) locate in a same function 𝑓 , and ii) their taint

propagation traces share a same sub-trace starting from the entry

of 𝑓 . With this grouping strategy, the reviewer can avoid studying

the shared taint trace over and over and quickly go through a

warning group by only carefully inspecting a small subset, greatly

reducing the required review time. A real-world example of

warning grouping can be found in §6.7.

5 IMPLEMENTATION

As mentioned before, SUTURE is built on top of Dr. Checker,

however, to improve the accuracy of the static analysis and

support high-order taint flow construction, we re-write most parts

of Dr. Checker’s static analysis and implement many new

functionalities (detailed in §3), in total, compared to Dr. Checker,

SUTURE has 14,482 LOC added and 2,741 LOC removed in C++,

plus 630 LOC of python scripts. In this section we discuss some

implementation details of SUTURE.

LLVM Version. Dr. Checker is based on LLVM 3.8, which is too

old to compile newer kernel versions nowadays. To test the latest

kernels, SUTURE is based on LLVM 9.0.

Driver Module and Entry Function Identification. We follow

Dr. Checker’s approach [26] to identify the vendor driver modules

and their entry functions. However, we make some improvements

including (1) besides the modules identified by keyword search

in the kernel config file, we also review the kernel source tree

to include any missing ones, and (2) we update some out-of-date

kernel structure definitions in the Dr. Checker’s entry identification

script, as well as include some missing ioctl() functions.
FalseAlarms Filtering. We use some simple but reliable heuristics

to filter out certain obvious false alarms. Specifically, we cut off the

taint flows through (1) a modulo operation if the modulus is a small

integer (current threshold is 64), and (2) a logical “and” operation if

only limited number of bits (current threshold is 6) are not cleared.

Basically, these situations suggest that the tainted value is a well

bounded “index” or “flag” over which the user has a very limited

control, thus unlikely to cause security issues. We leave a more

systematical and principle false alarms filtering as a future work,

as will be discussed in §7.

6 EVALUATION

In this section we show the evaluation results of SUTURE as both

a static analysis engine (e.g., the efficacy of our static analysis im-

provements in §3) and a high-order bug finding tool (e.g., regard-

ing its accuracy, efficiency, and bug finding ability).

6.1 Experiment Setup and Procedure

Dataset. We evaluate SUTURE on the driver modules extracted

from a diverse set of kernels used in flagship Android devices,

manufactured by different vendors and based on different chipsets,

we summarize them in Table 2. The last column in the table lists the

number of driver modules we extract and test for the corresponding

kernel. Besides the relatively new kernels in the table, we also

compile older versions of the Qualcomm kernel modules which

contain 4 known high-order taint vulnerabilities (as seen in Table 5),

to test whether SUTURE can successfully catch them.
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No. Vendor Chipset Model Version #Modules

0 Google Qualcomm Pixel 4 XL 4.14.150 37

1 Samsung Exynos Galaxy S20 4.19.87 20

2 Huawei Hisilicon Mate 40 Pro 4.14.116 30

3 Xiaomi Mediatek
Redmi K30

Ultra
4.14.141 29

Table 2: Tested Android Kernels

Hardware Configuration. We run the evaluation on a server with

Intel Xeon E5-2695 v4 CPU @ 2.10GHz and 256 GB RAM.

Procedure. For each selected kernel in Table 2, we first try to

extract its vendor-specific driver modules and then identify their

entry functions, as described in §5. With the above input we run

SUTURE for high-order taint vulnerability discovery, the output

warning groups (§4) are thenmanually reviewed by us to decide true

and false positives. It is worth noting that although SUTURE is also

capable of discovering the simple first-order taint vulnerabilities

(i.e., only require one entry function invocation), in the evaluation

we focus on the high-order ones only.

6.2 Efficacy of SUTURE’s Static Analysis
Improvements

To achieve a highly precise analysis SUTURE ships with many

different static analysis improvements as detailed in §3. To better

understandwhether and how they benefit the analysis precision and

efficiency, we randomly pick 20 modules from the Qualcomm kernel

and run an instrumented SUTURE on them, collecting statistics

during the process for each of SUTURE’s improvements. These

statistics can be categorized into three groups as shown in Table 3:

(1) For opportunistic path-sensitivity (PATH), we can see that it

helps SUTURE get rid of infeasible basic blocks and/or callees (a

callee can contain many more basic blocks that we do not count in

Table 3) in 19 out of 20 modules, boosting both performance and

accuracy. For example, we find the analysis time of one largemodule

decreases from 54 hrs to 31 hrs by applying the opportunistic path-

sensitivity.

(2) For multi-source multi-sink pairing (MSMS), memory-SSA

(MEMSSA), and index-sensitivity (INDEX), our statistics show

that they can effectively trim false positive points-to records and

taint flows. Specifically, besides the data in Table 3, MEMSSA also

captures missing points-to records by Dr. Checker in all 20

modules (Min/Med/Max: 10/44/1351), though Dr. Checker adopts

an always weak taint update policy (e.g., no overwriting for old

taint records), missing points-to records will inevitably lead to

false negative taint flows from the very beginning. It is worth

noting that both false positive and negative data flow facts will

accumulate even more (possibly exponentially) if left unrecognized

as the analysis proceeds, thus, our statistics here are significantly

underestimated.

(3) For pointer arithmetic (POINTER) and nested structure (NEST),

we observe that in all tested modules, there is a considerable subset

of GEP operations (i.e., themain LLVM IR responsible for calculating

the structure field offset) that need to handle them - otherwise,

both false positive and negative analysis errors can happen and

accumulate.

Improvement
#Affected

Modules

#Infeasible BBs

(Min/Med/Max)

#Infeasible Callees

(Min/Med/Max)

PATH (§3.4) 19 9/153/115336 0/8/2414

#Reduced Points-To

(Min/Med/Max)

#Reduced Taint Flows

(Min/Med/Max)

MSMS (§3.5) 18 8/174/852492 15/886/1024094

MEMSSA (§3.6.1) 20 10/1789/547733 52/5139/2480710

INDEX (§3.6.2) 20 0/14/17850 18/2922/276318

Ratio of Affected GEP Operations

(Min/Med/Max)

POINTER (§3.6.3) 20 3%/13%/79%

NEST (§3.6.3) 20 12%/27%/37%

Table 3: Statistics on SUTURE’s Static Analysis Improve-

ments from 20 Randomly Selected QualcommModules

Kernel

No.

#Warning Groups
#TP2 #FPr

3 (R4)
ITDUD0 TAD0 TLBD0 TPDD0 Unified1

0 0 188 87 277 488 30 22 (42.31%)

1 0 137 41 147 281 17 12 (41.38%)

2 0 201 63 171 365 22 22 (50.00%)

3 0 240 62 280 469 10 27 (72.97%)

SUM 0 766 253 875 1603 79 83 (51.23%)

0: #groups of warnings issued by specific detectors (Table 1) only.

1: #groups by standard grouping strategy regardless of warning types (§4);

2: #groups manually confirmed by us as true positives.

3: #false alarm groups as perceived by the reviewers. (§6.3)

4: Reviewer perceived false positive rate: #FPr/(#FPr+#TP) (§6.3)

Table 4: Vulnerability Discovery Accuracy of SUTURE

We further build a baseline version of Dr. Checker augmented

only with multi-tag taint analysis (§3.6.5) that is essential for taint

flow connection, but not any other enhancements, to verify whether

it can identify the same high-order vulnerabilities as discovered by

SUTURE. The result shows that none of our 19 vendor confirmed

warnings are identified (i.e., for each high-order warning at least

one component local taint flow is not recognized), because i) the

analysis is stuck due to too many false positive points-to and taint

records (e.g., the analysis progress of one module is almost frozen

after 329 hrs, around which point each LLVM variable has tens of

thousands of points-to and taint records on average), ii) failure to

resolve correct indirect call targets (§3.6.4), and iii) missing taint

propagation due to failure to handle pointer arithmetic and nested

structure. These results well justify the necessity and efficacy of

SUTURE’s various static analysis improvements in §3.

6.3 Vulnerability Discovery Accuracy

We show the evaluation results regarding the vulnerability

discovery accuracy of SUTURE in Table 4. SUTURE in total fires

1,603 high-order warning groups, where 79 are confirmed as true

positives by our manual inspection. Furthermore, 19 out of the 79

have been confirmed by the corresponding vendors. At the first

glance, this results in a very high false positive rate of 95.07%

((1603-79)/1603) which seems completely unusable in practice.

However, this is far from the truth. In the remaining of this section,

Session 3B: Operating Systems  CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

819



00 int mtk_session_set_mode(..., unsigned int session_mode) {
01 ...
02 if (session_mode >= MTK_DRM_SESSION_NUM) {
03 goto error;
04 }
05 …
06 mtk_crtc_path_switch(…,mode_tb[session_mode].ddp_mode[i], 1);
07 …
08 }

Figure 7: A Taint Trace Segment Leading to False Alarms

we will first describe the root causes behind these false alarms, and

then explain why the actually perceived false positive rate by the

SUTURE users is much lower (i.e., 51.23%).

False Positive Analysis. We summarize the major causes of SU-

TURE’s false alarms as following.

(1) Ignored Constraints for Tainted Variables. Except the simple false

alarm filtering heuristics described in §7, SUTURE in general

conservatively keeps all the taint flows, without reasoning about

the constraints posed on the tainted variables, which can lead to

false positive warnings (e.g., the tainted variable in the vulnerable

site has been properly sanitized). We show a concrete example in

Fig. 7. The argument session_mode of mtk_session_set_mode()
is user-controllable, which is then used to index the array mode_tb
at line 6. SUTURE thus determines that the whole retrieved array

element mode_tb[session_mode] is tainted, this is true since the
user does have the choice on which element to access. However,

session_mode is upper bound checked at line 2 and the array

mode_tb is also predefined, so the user cannot really control the

content of the obtained array element on desire. As a result,

continuing the taint propagation from mode_tb[session_mode]
causes false alarms subsequently. So far, the ignored constraints is

the most common FP cause for SUTURE, as well as many other

static analysis based bug detection works.

(2) Recursive Data Structures. The recursive data structure (e.g.,

linked lists) is another well-known difficulty for static analysis,

since it is hard to statically differentiate their contained elements.

To be conservative, SUTURE does not differentiate the elements

in the linked list which is widely-used in kernel. Though being a

common practice, it can cause false alarms in many cases, for an

example, a local taint flow 𝜏0 sinks to element 0 of a linked list

while 𝜏1 sources from a different element 1, in theory, 𝜏0 cannot
be connected to 𝜏1 since 𝑠𝑖𝑛𝑘 (𝜏0) ≠ 𝑠𝑜𝑢𝑟𝑐𝑒 (𝜏1) (Def 5 in §3.2), but

SUTURE connects them due to element-insensitivity, resulting in

invalid high-order taint flows.

(3) Infeasible Paths. By nature, static analysis may follow infeasible

paths, leading to false alarms. There are two reasons for SUTURE

to encounter with infeasible paths: i) SUTURE recovers infeasible

indirect call targets, and ii) SUTURE fails to recognize conflicting

path constraints with its opportunistic path-sensitivity (§3.4) be-

cause they are too complicated. This FP cause is actually the least

common out of the three.

As can be seen from the above analysis, the core problem behind

the false alarms is not that SUTURE generates inaccurate local taint

flows, on the contrary, in almost all cases, these local flows are valid

and precise (e.g., no over-taint), demonstrating SUTURE’s value as

a highly precise static taint analysis for a single entry function. In

CVE Bug Type Severity1 Order2 Discovered

CVE-2016-2068 Integer Overflow High 2 Yes

CVE-2016-5859 Integer Overflow High 2 Yes

CVE-2017-0608 Buffer Overflow High 2 Yes

N/A3 Buffer Overread N/A3 2 Yes

1: Based on the CVSS score in the CVE entry. 2: Def 6 in §3.2.

3: We cannot locate a CVE number, the patch can be found in [4].

Table 5: Evaluation on Known High-Order Vulnerabilities

other words, bug finding tools go beyond the requirement of precise

taint flow tracking - they also need to rigorously reason about the

constraints (reason (1) and (3)) where SUTURE falls short.

Other than the above, SUTURE’s false alarm count is greatly

boosted by high-order taint flow construction. First, even if two

local taint flows are both valid, connecting them incorrectly can

cause FPs (e.g., reason (2)), secondly, any false positives encountered

in one local taint flow will be “multiplied” by its connection to

potentially many other local flows. However, this also means that

many false alarms share exactly the same problematic sub- taint

trace. Exploiting this fact, the actual false positive rate perceived

by reviewers is orders of magnitude smaller with the following

review procedure: i) the reviewer picks and inspects a warning, if

it is a FP, then also identifies the problematic sub-trace which is

basically an instruction sequence in string format; ii) automatically

filter out all other warnings containing the same sub-trace by string

match; iii) pick the next warning to review from the filtered pool.

As a concrete example, once recognized, the taint trace in Fig. 7

helps us immediately exclude 94 warning groups without additional

reviewing efforts.

We hence define the reviewer perceived false positive rate

𝑅 as 𝑅 = #𝐹𝑃𝑟 /(#𝐹𝑃𝑟 + #𝑇𝑃), where #𝐹𝑃𝑟 is the number of false

alarms that actually need the reviewer to carefully inspect one by

one (e.g., does not include automatically filtered out ones) and the

#𝑇𝑃 is the count of valid warning groups. 𝑅 represents SUTURE’s

false positive rate in the real-world review scenario, as shown in

Table 4, SUTURE achieves an aggregated 𝑅 of 51.23%, which is

much more acceptable for a static analysis tool. We will discuss

potential ways to further reduce the false positive rate in §7.

6.4 Known High-Order Taint Vulnerabilities

It is usually difficult to test the false negative rate of a bug finding

tool due to the lack of ground truth, this is especially true for SU-

TURE since there is no available large dataset of high-order taint

bugs. Thus, as a small-scale validation, we assemble four known

high-order taint vulnerabilities and confirm that SUTURE can suc-

cessfully re-discover them in older versions of driver modules, as

shown in Table 5. Though not being a comprehensive evaluation,

we can still envision potential reasons for false negatives.

False Negative Analysis. We summarize some potential false

negative causes as following.

(1) Soundy Analysis. SUTURE is built on top of Dr. Checker and

inherits its soundy but not sound static analysis (e.g., skip the

general kernel functions and limit the loop iteration times) for

efficiency and accuracy [26], which can possibly lead to false

negatives. Moreover, since the general kernel functions are
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Figure 8: Time Breakdown for QualcommModules (> 1 hr)

skipped, Dr. Checker and SUTURE need to model the behaviors of

some important utility functions such as copy_from_user() (e.g.,
as a taint source), in this situation, it is possible for SUTURE to

miss some vulnerabilities due to the incomplete or incorrect

modeling. In fact, this has already happened in Dr. Checker due to

the lack of modeling of memdup_user() (another taint initiator

function), which we add in SUTURE.

(2) Incomplete Call Chains. SUTURE cannot guarantee to analyze

all possible call chains, mainly due to two reasons: i) SUTURE may

miss indirect call targets, and ii) SUTURE limits the call stack depth

when analyzing each entry function in the top-down manner for

scalability, currently, the depth limit is 8, increased from 5 in Dr.

Checker.

We will discuss possible fixes to some of these issues in §7.

6.5 Efficiency

SUTURE analyzes one kernel module with one instance on a single

CPU core, so naturally, multiple modules can be concurrently

analyzed on multi-core systems that are widely available

nowadays (e.g., our evaluation server has 72 cores). Thus, the

efficiency bottleneck is mainly those most demanding modules. In

Fig. 8, we show the time cost of all Qualcomm kernel modules

which take more than 1 hr to analyze. The time cost covers two

parts: i) the static analysis to generate per-entry taint summaries

(§3), and ii) the vulnerability discovery involving on-demand taint

flow construction (§4). Basically, SUTURE’s static analysis is

significantly more costly than Dr. Checker’s - even the most costly

module in latter’s evaluation takes about only 16 mins [26]. This

performance, however, is well expected due to our improvements

on static analysis precision (§3). The vulnerability discovery time

is generally not correlated to the static analysis time, because it

mainly relies on the amount of cross-entry shared states - the

more of them, potentially the more high-order taint flows we need

to construct during the vulnerability discovery process.

Due to space limit, we only show the performance details of the

Qualcomm kernel as the other kernels bear a similar characteris-

tic. As a conclusion, we believe SUTURE achieves a reasonable effi-

ciency (e.g., analyzes all Qualcomm modules concurrently within

30 hrs) given its precision and capability.

6.6 Discussion of Order

One interesting aspect of the warnings generated by SUTURE is

the 𝑜𝑟𝑑𝑒𝑟 (Def 6 in §3.2), denoting the count of required entry

function invocations to trigger the vulnerability. Though SUTURE

by design is capable of discovering vulnerabilities of arbitrary

order, so far, most of our confirmed true positive warnings in the

evaluation are second-order, SUTURE generates one valid

third-order warning, however, the same vulnerability can also be

reproduced by a simplified second-order taint flow. That being

said, we create some artificial benchmark programs that contain

vulnerabilities triggerable by higher-order taint flows only (up to

ninth-order) and confirm that SUTURE can successfully pinpoint

them. Based on these results, we envision that SUTURE can

discover higher-order vulnerabilities with an extended scope (e.g.,

more kernel modules and user-space programs).

6.7 Study of Discovered Vulnerabilities

In this section we discuss the vendor-confirmed high-order

vulnerabilities discovered by SUTURE so far. By root cause, the 19

confirmed warning groups can be further categorized into 6 major

issues (e.g., under the same root cause there can be different

warnings for different calling contexts or instructions). We have 1

issue rated as high severity and 3 as medium by the vendors,

which can cause arbitrary memory read/write or privilege

escalation. For the remaining 2, the developers confirmed that they

can cause out-of-bound memory access, but with unclear security

impact (e.g., the over-read data may not contain sensitive

information), thus need further investigation. We are still in the

process of reporting and waiting for confirmation of other

discovered issues. By nature, the high-order taint vulnerabilities

have security impacts as severe as the well-known first-order ones,

however, they are more stealthy (and thus dangerous) due to the

complicated control and data flows, making SUTURE a valuable

tool. We will discuss SUTURE’s potential in discovering more

security vulnerabilities in §7. To better illustrate the discovered

high-order issues, in the remaining section we study two

representative cases in detail.

Case 1. To trigger the vulnerability in Fig. 9 we need two steps

(i.e., a second-order vulnerability). First, a user needs to invoke the

entry function snd_ctl_ioctl(), which eventually reaches

msm_pcm_put_out_chs() that propagates a user input (in red) to

a global variable channel_mixer[fe_id].output_channel (in

blue) at line 3. Then, after snd_ctl_ioctl() returns, another

entry function snd_pcm_ioctl() needs to be invoked. Following

its callchain, channel_mixer+fe_id, which is equivalent to

&channel_mixer[fe_id], is passed as an argument to a callee

adm_programable_channel_mixer() at line 9, the corresponding

formal argument, ch_mixer, is then used in the overflow inducing

operation at line 17, to access ch_mixer->output_channel that

aliases to channel_mixer[fe_id].output_channel, which is the

global variable controllable by the user in the first step (line 3).

Consequently, the user can overflow param_size at line 17 or sz
at line 22, since the latter is used as an allocation size (line 23), the

allocated buffer can be much smaller than expected due to the

overflow, causing out-of-bound access later.

It is worth noting that, besides the high-order nature, this

vulnerability also involves indirect calls (snd_ctl_elem_write()
-> msm_pcm_put_out_chs() in step 1), pointer arithmetic (line 10),

and nested structure (line 3), making it difficult to be statically

discovered. We also want to mention that SUTURE will group

warnings for the potential overflows at line 17 and 22 together as
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STEP 1:
CALLCHAIN: snd_ctl_ioctl -> snd_ctl_elem_write_user ->
snd_ctl_elem_write -> msm_pcm_put_out_chs

00 static int msm_pcm_put_out_chs(struct snd_kcontrol *kcontrol,
01   struct snd_ctl_elem_value *ucontrol) {
02 ...
03 channel_mixer[fe_id].output_channel =
04 (unsigned int)(ucontrol->value.integer.value[0]);
05 return 1;
06 }

STEP 2:
CALLCHAIN: snd_pcm_ioctl -> ... -> msm_pcm_routing_channel_mixer ->
adm_programable_channel_mixer

07 static int msm_pcm_routing_channel_mixer(int fe_id, …) {
08 ...
09 ret = adm_programable_channel_mixer(…, …, …, …,
10 channel_mixer + fe_id, ...);
11 ...
12 }
13
14 int adm_programable_channel_mixer(…, …, …, …,
15      struct msm_pcm_channel_mixer *ch_mixer, …) {
16 ...
17 param_size = 2 * (4 + ch_mixer->output_channel +
18 ch_mixer->input_channels[channel_index] +
19 ch_mixer->input_channels[channel_index] *
20 ch_mixer->output_channel); //potential overflow
21 ...
22 sz = ... + param_size; //potential overflow
23 adm_params = kzalloc(sz, GFP_KERNEL);
24 ...
25 }

Figure 9: Case Study 1: A High-Order Vulnerability Discov-

ered by SUTURE

described in §4, leading to a more natural and easier review

process for the auditors.

Case 2. As shown in Fig. 10, we again need two entry function

invocations to trigger the vulnerability. First, snd_ctl_ioctl() is

invoked with proper arguments so that iaxxx_put_pdm_bclk()
can be subsequently called, within which the user can set the value

of a global variable iaxxx->pdm_bclk (line 5). Then, unlike the

first case study, we invoke the same entry function

snd_ctl_ioctl() again but with different arguments, so that this

time we follow a different call chain to eventually reach

iaxxx_pdm_port_setup(), which uses the same global variable

iaxxx->pdm_bclk unchecked to index a fixed-length array

pdm_cfg, causing out-of-bound accesses (line 13-15). This issue

has been rated as high severity by Google.

This case has some notable characteristics. First, even if there is

only one entry function (e.g., snd_ctl_ioctl()), high-order taint
analysis is still necessary as some callees are mutually exclusive

within one entry invocation (e.g., iaxxx_put_pdm_bclk() and

iaxxx_pdm_port_setup()). Second, it is actually not so

straightforward as it appears to match the global structure iaxxx
used at line 5 and 12, because both iaxxx are local instead of

explicitly defined global variables (see line 4 and 10). In this

situation, SUTURE must rely on its implicit global memory

matching (covered in §3.3.2) to decide the identity of the two

occurrences (e.g., both iaxxx can be reached from a shared

kcontrol object following a same access path).

STEP 1:
CALLCHAIN: snd_ctl_ioctl -> snd_ctl_elem_write_user ->
snd_ctl_elem_write -> iaxxx_put_pdm_bclk

00 static int iaxxx_put_pdm_bclk(struct snd_kcontrol *kcontrol,
01                  struct snd_ctl_elem_value *ucontrol)
02 {
03 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
04 struct iaxxx_codec_priv *iaxxx = dev_get_drvdata(codec->dev);
05 iaxxx->pdm_bclk = ucontrol->value.enumerated.item[0];
06 return 0;
07 }

STEP 2:
CALLCHAIN: snd_ctl_ioctl -> snd_ctl_elem_write_user ->
snd_ctl_elem_write -> iaxxx_pdm_portb_put -> iaxxx_pdm_port_setup

08 static int iaxxx_pdm_port_setup(…) {
09 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
10 struct iaxxx_codec_priv *iaxxx = dev_get_drvdata(codec->dev);
11 …
12 pdm_bclk = iaxxx->pdm_bclk;
13 port_sample_rate = pdm_cfg[pdm_bclk].sample_rate; //OOB
14 words_per_frm = pdm_cfg[pdm_bclk].words_per_frame; //OOB
15 word_len = pdm_cfg[pdm_bclk].word_length; //OOB
16 …
17 }

Figure 10: Case Study 2: A High-Order Vulnerability Discov-

ered by SUTURE

7 LIMITATIONS AND DISCUSSIONS

In this section we summarize SUTURE’s limitations and discuss

potential improvements in the future.

Soundness. As mentioned in §6.4, SUTURE’s static analysis is not

sound (e.g., no fixed-point loop analysis, limited call stack depth).

Although we intentionally sacrifice the soundness for a better per-

formance and accuracy similar as in Dr. Checker [26], it can lead

to false negatives regarding vulnerability discovery. One possible

way to improve soundness is to adopt the bottom-up style static

analysis [9, 10, 40] (i.e., callees are analyzed and summarized be-

fore callers) when constructing the taint summary for each entry

function, which alleviates the limitations on call stack depth due to

the improved efficiency (e.g., a same callee will not be repeatedly

analyzed). We leave this as a future work.

Recursive Data Structure Handling. SUTURE does not

differentiate the elements in recursive data structures (e.g., linked

lists) to (1) be conservative, and (2) simplify the access path to ease

the global object matching (§3.3.2) involving recursive structures

(e.g., there can be numerous access paths from one linked list

element to another). However, this design choice also contributes

significantly to false alarms as mentioned in §6.3. To better handle

the recursive data structures and suppress the false positives, we

envision a more fine-grained static analysis which can differentiate

the accessed elements (e.g., by considering the conditions used to

select a specific element, such as comparing the element id against

a desired value), or the integration of a dynamic analysis which

can help verify whether two element access are the same utilizing

the runtime information.

Path Constraints Reasoning. Besides the simple path

constraints considered in opportunistic path-sensitivity (§3.4) to

filter out infeasible paths, SUTURE does not reason about the path
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constrains associated with feasible taint flows, resulting in the

major body of false alarms as mentioned in §6.3. There are existing

solutions for this problem in previous works, Sys [8] and

UBITECT [40] employ limited-scale symbolic execution to validate

the discovered vulnerabilities without introducing high

performance penalties, KINT [36] carefully reasons about the

constraints specifically for integer overflow vulnerabilities.

Though not the focus of this paper, we believe these approaches

can be naturally combined with SUTURE to further reduce false

alarms, which we leave as a future work.

Vulnerability Scope. To demonstrate the efficacy of SUTURE’s

high-order analysis capability, in this paper we choose to reuse

several of Dr. Checker’s detectors for discovering high-order taint

vulnerabilities in the kernel (§4). However, the techniques packed

in SUTURE can also be applied to discover a wider range of

vulnerabilities in a broader set of software, for example, many

use-after-free vulnerabilities (e.g., [1, 2]) have a cross-entry nature

(e.g., the “free” happens in one entry invocation while the “use”

happens in another), where SUTURE’s cross-entry data flow

analysis can be useful. Moreover, SUTURE can also scan general C

programs other than the kernel.

8 RELATEDWORK

Statically Discovering Taint Vulnerabilities. There is a large

amount of work trying to statically discover taint style

vulnerabilities, for different software written in different

programming languages and at different layers. We discuss some

significant categories as following.

For Android Applications. FlowDroid [5] is a widely used precise

static taint analysis designed for Android applications, similarly,

many works utilize static taint analysis to detect information

leakage in Android apps [17, 21].

For Web Applications. Many works focus on discovering taint style

vulnerabilities in the web applications [6, 14, 23, 24, 33, 35, 37],

which is very different from the main target of SUTURE (i.e., the

kernel written in C). However, it is worth noting that Dahse et

al. [14] proposes to detect the second-order vulnerability in the

web applications, where the taint flows through some persistent

data stores (e.g., databases and files) on the server. Compared to it,

SUTURE targets the more complex kernel and the general global

states as taint relays, supporting taint flows of arbitrary order.

For Binaries. iDEA [7] utilizes taint tracking to find vulnerabilities

in Apple kernel driver binaries. Cova et al. [13], DTaint [10] and

Saluki [18] perform binary level static taint analysis based on

symbolic execution to find vulnerabilities in the executable.

SUTURE assumes the source code availability, which can benefit

the accuracy (e.g., the exact structure layout). Besides, symbolic

execution may not scale well for the large code base like the

kernel, especially when hunting the high-order vulnerabilities.

For Open-Source C Programs. This is the most relevant category to

SUTURE due to the same target. Chen et al. [9] uses static taint

analysis to discover the implicit information leak in the kernel

network stack, Zhang et al. [41] and Unisan [25] try to discover

uninitialized memory allocations, KINT [36] can detect the integer

errors in kernel and user programs. Dr. Checker [26] proposes a

static analysis framework to discover different taint-style

vulnerabilities. Johnson et al. [22] and UBITECT [40] adopt type

inference based methods to detect specific taint vulnerabilities.

Compared to these works, SUTURE has multiple enhancements

(§3) on the static taint analysis to make it more precise, and more

importantly, supports the high-order taint analysis. Yamaguchi et

al. [39] and Shastry et al. [29] try to automatically infer the taint

vulnerability patterns from known instances, and use them to

search similar vulnerabilities. SUTURE on the other hand

discovers new taint vulnerabilities from the ground.

Improvements on Static Analysis. Many works focus on

improving the static analysis precision and/or efficiency, we

discuss some of them as following.

Taint Analysis. TAINTINDUCE [12] automatically infers the taint

propagation rules from dynamic analysis to avoid the inaccuracies

of the human defined rules, for the same sake, Neutaint [30]

employs neural network to conduct the dynamic taint analysis.

ConDySTA [43] uses dynamic analysis results to improve static

taint analysis accuracy. P/Taint [19] tries to unify the taint and

points-to analysis to ease the implementation.

Path-Sensitivity. ESP [15] improves the scalability of the

path-sensitive analysis by merging branches leading to same

program states of interest, for the same goal, Fusion [32] makes

the SMT solver work directly on the program dependence graph,

together with the static analysis. Dillig et al. [16] improve

path-sensitivity by considering the variable observability and the

necessary and sufficient conditions of original path constraints.

SUTURE’s opportunistic path-sensitivity is more lightweight and

mainly designed for trimming infeasible paths efficiently.

Other Improvements. Pearce et al. [27] extends the set-constraints

language to support an efficient field-sensitive pointer analysis for

C, Saturn [38] builds its static bug detection on boolean satisfiabil-

ity (SAT) for a better precision and scalability. Heo et al. [20] uses

machine learning to guide the switch between sound and unsound

static analysis, taking the best of both worlds. Pinpoint [31] defers

the inter-procedure flow construction to the bug detection phase

(on-demand) for a better efficiency, analogously, SUTURE also con-

structs the cross-entry flows in an demand-driven way (§4).

In general, we consider these works complementary to SUTURE,

as they can potentially help improve the precision and efficiency of

SUTURE’s static analysis.

9 CONCLUSION

In this work, we develop SUTURE, a precise static analysis tool that

can be used to discover complex high-order taint vulnerabilities in

large code bases like the Linux kernel, a goal that was previously not

attempted via static analysis. SUTURE successfully discovers new

severe high-order vulnerabilities in the kernel, with a reasonable

accuracy as perceived by the warning reviewers and an acceptable

performance.
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